Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 1.338
Filter
1.
Cien Saude Colet ; 26(8): 2937-2947, 2021 Aug.
Article in Portuguese, English | MEDLINE | ID: covidwho-20232909

ABSTRACT

Routine immunization during pandemics can be harmed. This study estimated the influenza vaccination coverage in older adults during the COVID-19 through the EPICOVID-19, a population-based study conducted in 133 cities from the 26 Brazilian states and Federal District. We selected 25 census tracts per city, with probability proportional to the tract's size, ten households by census tract, and one random individual interviewed. A total of 8,265 older adults (≥60 years old) were interviewed and asked whether they had been vaccinated against flu in 2020. Vaccination coverage was 82.3% (95% CI: 80.1-84.2) with no difference by gender, age, and region; higher vaccination coverage was observed among the wealthiest (84.7% versus 80.1% in the poorest) and among the more educated (87.3% versus 83.2% less educated); lower coverage among indigenous (56.9% versus > 80% among other ethnic groups). A positive association was identified with the number of comorbidities among men but not among women. Most of the population was vaccinated (97.5%) in the public health system. The private network was chosen mainly in the South by the wealthiest and more educated. Vaccination coverage was seven percentage points lower than the government target (90%), and inequalities should be reversed in future campaigns.


Imunizações de rotina durante pandemias podem ser prejudicadas. Este estudo estimou a cobertura vacinal para influenza em idosos durante a COVID-19 através do EPICOVID-19, inquérito populacional realizado em 133 cidades sentinelas dos 26 estados brasileiros e Distrito Federal. Selecionou-se 25 setores censitários por cidade, amostragem proporcional ao tamanho, dez domicílios por setor e uma pessoa por domicílio, aleatoriamente. O quantitativo de 8.265 idosos (≥ 60 anos) foram entrevistados e responderam se haviam sido vacinados contra gripe em 2020. A cobertura foi 82,3% (IC95% 80,1; 84,2), sem diferenças por sexo, idade ou região. Maiores coberturas ocorreram nos mais ricos (84,7% versus 80,1% nos mais pobres) e nos mais escolarizados (87,3% versus 83,2% nos menos escolarizados). Menor cobertura nos indígenas (56,9% versus coberturas superiores a 80% nos demais grupos étnicos). Houve associação positiva com número de comorbidades entre homens, mas não entre mulheres. A maioria vacinou-se na rede pública (97,5%), sendo a rede privada mais utilizada na região Sul, pelos mais escolarizados e mais ricos. Conclui-se que a cobertura vacinal ficou sete pontos percentuais abaixo da meta governamental (90%), e que desigualdades devem ser revertidas em futuras campanhas.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Aged , Cities , Female , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Male , Middle Aged , Pandemics/prevention & control , SARS-CoV-2 , Vaccination
3.
JMIR Public Health Surveill ; 9: e44970, 2023 06 12.
Article in English | MEDLINE | ID: covidwho-20244462

ABSTRACT

BACKGROUND: Seasonal influenza activity showed a sharp decline in activity at the beginning of the emergence of COVID-19. Whether there is an epidemiological correlation between the dynamic of these 2 respiratory infectious diseases and their future trends needs to be explored. OBJECTIVE: We aimed to assess the correlation between COVID-19 and influenza activity and estimate later epidemiological trends. METHODS: We retrospectively described the dynamics of COVID-19 and influenza in 6 World Health Organization (WHO) regions from January 2020 to March 2023 and used the long short-term memory machine learning model to learn potential patterns in previously observed activity and predict trends for the following 16 weeks. Finally, we used Spearman correlation coefficients to assess the past and future epidemiological correlation between these 2 respiratory infectious diseases. RESULTS: With the emergence of the original strain of SARS-CoV-2 and other variants, influenza activity stayed below 10% for more than 1 year in the 6 WHO regions. Subsequently, it gradually rose as Delta activity dropped, but still peaked below Delta. During the Omicron pandemic and the following period, the activity of each disease increased as the other decreased, alternating in dominance more than once, with each alternation lasting for 3 to 4 months. Correlation analysis showed that COVID-19 and influenza activity presented a predominantly negative correlation, with coefficients above -0.3 in WHO regions, especially during the Omicron pandemic and the following estimated period. The diseases had a transient positive correlation in the European region of the WHO and the Western Pacific region of the WHO when multiple dominant strains created a mixed pandemic. CONCLUSIONS: Influenza activity and past seasonal epidemiological patterns were shaken by the COVID-19 pandemic. The activity of these diseases was moderately or greater than moderately inversely correlated, and they suppressed and competed with each other, showing a seesaw effect. In the postpandemic era, this seesaw trend may be more prominent, suggesting the possibility of using one disease as an early warning signal for the other when making future estimates and conducting optimized annual vaccine campaigns.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Humans , Influenza, Human/epidemiology , SARS-CoV-2 , Pandemics , Retrospective Studies , World Health Organization
4.
Euro Surveill ; 28(21)2023 May.
Article in English | MEDLINE | ID: covidwho-20244209

ABSTRACT

BackgroundSince 1996, epidemiological surveillance of acute respiratory infections (ARI) in Spain has been limited to seasonal influenza, respiratory syncytial virus (RSV) and potential pandemic viruses. The COVID-19 pandemic provides opportunities to adapt existing systems for extended surveillance to capture a broader range of ARI.AimTo describe how the Influenza Sentinel Surveillance System of Castilla y León, Spain was rapidly adapted in 2020 to comprehensive sentinel surveillance for ARI, including influenza and COVID-19.MethodsUsing principles and methods of the health sentinel network, we integrated electronic medical record data from 68 basic surveillance units, covering 2.6% of the regional population between January 2020 to May 2022. We tested sentinel and non-sentinel samples sent weekly to the laboratory network for SARS-CoV-2, influenza viruses and other respiratory pathogens. The moving epidemic method (MEM) was used to calculate epidemic thresholds.ResultsARI incidence was estimated at 18,942 cases per 100,000 in 2020/21 and 45,223 in 2021/22, with similar seasonal fold increases by type of respiratory disease. Incidence of influenza-like illness was negligible in 2020/21 but a 5-week epidemic was detected by MEM in 2021/22. Epidemic thresholds for ARI and COVID-19 were estimated at 459.4 and 191.3 cases per 100,000 population, respectively. More than 5,000 samples were tested against a panel of respiratory viruses in 2021/22.ConclusionExtracting data from electronic medical records reported by trained professionals, combined with a standardised microbiological information system, is a feasible and useful method to adapt influenza sentinel reports to comprehensive ARI surveillance in the post-COVID-19 era.


Subject(s)
COVID-19 , Influenza, Human , Respiratory Syncytial Virus Infections , Respiratory Tract Infections , Humans , Influenza, Human/epidemiology , Pandemics , COVID-19/epidemiology , Spain/epidemiology , SARS-CoV-2 , Respiratory Tract Infections/epidemiology , Sentinel Surveillance , Respiratory Syncytial Virus Infections/epidemiology
5.
Proc Natl Acad Sci U S A ; 120(24): e2302245120, 2023 Jun 13.
Article in English | MEDLINE | ID: covidwho-20243169

ABSTRACT

A key scientific challenge during the outbreak of novel infectious diseases is to predict how the course of the epidemic changes under countermeasures that limit interaction in the population. Most epidemiological models do not consider the role of mutations and heterogeneity in the type of contact events. However, pathogens have the capacity to mutate in response to changing environments, especially caused by the increase in population immunity to existing strains, and the emergence of new pathogen strains poses a continued threat to public health. Further, in the light of differing transmission risks in different congregate settings (e.g., schools and offices), different mitigation strategies may need to be adopted to control the spread of infection. We analyze a multilayer multistrain model by simultaneously accounting for i) pathways for mutations in the pathogen leading to the emergence of new pathogen strains, and ii) differing transmission risks in different settings, modeled as network layers. Assuming complete cross-immunity among strains, namely, recovery from any infection prevents infection with any other (an assumption that will need to be relaxed to deal with COVID-19 or influenza), we derive the key epidemiological parameters for the multilayer multistrain framework. We demonstrate that reductions to existing models that discount heterogeneity in either the strain or the network layers may lead to incorrect predictions. Our results highlight that the impact of imposing/lifting mitigation measures concerning different contact network layers (e.g., school closures or work-from-home policies) should be evaluated in connection with their effect on the likelihood of the emergence of new strains.


Subject(s)
COVID-19 , Epidemics , Influenza, Human , Humans , COVID-19/epidemiology , COVID-19/genetics , Disease Outbreaks , Influenza, Human/epidemiology , Influenza, Human/genetics , Mutation
6.
Epidemiol Infect ; 151: e82, 2023 05 02.
Article in English | MEDLINE | ID: covidwho-20242864

ABSTRACT

This study aims to evaluate the impact of non-pharmaceutical interventions (NPIs) on the prevalence of respiratory pathogens among hospitalised children with acute respiratory infections (ARIs) in Suzhou. Children with ARIs admitted to the Children's Hospital of Soochow University between 1 September 2021 and 31 December 2022 and subjected to 13 respiratory pathogen multiplex PCR assays were included in the study. We retrospectively collected demographic details, results of respiratory pathogen panel tests, and discharge diagnostic information of the participants, and described the age and seasonal distribution of respiratory pathogens and risk factors for developing pneumonia. A total of 10,396 children <16 years of age, including 5,905 males and 4,491 females, were part of the study. The positive rates of the 11 respiratory pathogen assays were 23.3% (human rhinovirus (HRV)), 15.9% (human respiratory syncytial virus (HRSV)), 10.5% (human metapneumovirus (HMPV)), 10.3% (human parainfluenza virus (HPIV)), 8.6% (mycoplasma pneumoniae (MP)), 5.8% (Boca), 3.5% (influenza A (InfA)), 2.9% (influenza B (InfB)), 2.7% (human coronavirus (HCOV)), 2.0% (adenovirus (ADV)), and 0.5% (Ch), respectively. Bocavirus and HPIV detection peaked during the period from September to November (autumn), and MP and HMPV peaked in the months of November and December. The peak of InfA detection was found to be in summer (July and August), whereas the InfB peak was observed to be in winter (December, January, and February). HRSV and HRV predominated in the <3 years age group. HRV and HMPV were common in the 3-6 years group, whereas MP was predominant in the ≥6 years group. MP (odds ratio (OR): 70.068, 95%CI: 32.665-150.298, P < 0.01), HMPV (OR: 6.493, 95%CI: 4.802-8.780, P < 0.01), Boca (OR: 3.300, 95%CI: 2.186-4.980, P < 0.01), and HRSV (OR: 2.649, 95%CI: 2.089-3.358, P < 0.01) infections were more likely to develop into pneumonia than the other pathogens. With the use of NPIs, HRV was the most common pathogen in children with ARIs, and MP was more likely to progress to pneumonia than other pathogens.


Subject(s)
Influenza, Human , Metapneumovirus , Pneumonia , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Child , Male , Female , Humans , Influenza, Human/epidemiology , Prevalence , Retrospective Studies , Pneumonia/epidemiology , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/prevention & control , China/epidemiology
7.
Viruses ; 15(5)2023 05 13.
Article in English | MEDLINE | ID: covidwho-20241513

ABSTRACT

To face the COVID-19 outbreak, a wide range of non-pharmaceutical interventions (NPIs) aimed at limiting the spread of the virus in communities, such as mask-wearing, hand hygiene, social distancing, travel restrictions, and school closures, were introduced in most countries. Thereafter, a significant reduction of new asymptomatic and symptomatic COVID-19 cases occurred, although there were differences between countries according to the type and duration of the NPIs. In addition, the COVID-19 pandemic has been accompanied by significant variations in the global incidence of diseases due to the most common non-SARS-CoV-2 respiratory viruses and some bacteria. In this narrative review, the epidemiology of the most common non-SARS-CoV-2 respiratory infections during the COVID-19 pandemic is detailed. Moreover, factors that could have had a role in modifying the traditional circulation of respiratory pathogens are discussed. A literature analysis shows that NPIs were the most important cause of the general reduction in the incidence of influenza and respiratory syncytial virus infection in the first year of the pandemic, although the different sensitivity of each virus to NPIs, the type and duration of measures used, as well as the interference among viruses may have played a role in modulating viral circulation. Reasons for the increase in the incidences of Streptococcus pneumoniae and group A Streptococcus infections seem strictly linked to immunity debt and the role played by NPIs in reducing viral infections and limiting bacterial superimposed infections. These results highlight the importance of NPIs during pandemics, the need to monitor the circulation of infectious agents that cause diseases similar to those caused by pandemic agents, and the need to make efforts to improve coverage with available vaccines.


Subject(s)
COVID-19 , Influenza, Human , Respiratory Tract Infections , Virus Diseases , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Pandemics/prevention & control , Virus Diseases/epidemiology , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/prevention & control , Influenza, Human/epidemiology
8.
PLoS One ; 18(6): e0286734, 2023.
Article in English | MEDLINE | ID: covidwho-20241063

ABSTRACT

INTRODUCTION: Schools close in reaction to seasonal influenza outbreaks and, on occasion, pandemic influenza. The unintended costs of reactive school closures associated with influenza or influenza-like illness (ILI) has not been studied previously. We estimated the costs of ILI-related reactive school closures in the United States over eight academic years. METHODS: We used prospectively collected data on ILI-related reactive school closures from August 1, 2011 to June 30, 2019 to estimate the costs of the closures, which included productivity costs for parents, teachers, and non-teaching school staff. Productivity cost estimates were evaluated by multiplying the number of days for each closure by the state- and year-specific average hourly or daily wage rates for parents, teachers, and school staff. We subdivided total cost and cost per student estimates by school year, state, and urbanicity of school location. RESULTS: The estimated productivity cost of the closures was $476 million in total during the eight years, with most (90%) of the costs occurring between 2016-2017 and 2018-2019, and in Tennessee (55%) and Kentucky (21%). Among all U.S. public schools, the annual cost per student was much higher in Tennessee ($33) and Kentucky ($19) than any other state ($2.4 in the third highest state) or the national average ($1.2). The cost per student was higher in rural areas ($2.9) or towns ($2.5) than cities ($0.6) or suburbs ($0.5). Locations with higher costs tended to have both more closures and closures with longer durations. CONCLUSIONS: In recent years, we found significant heterogeneity in year-to-year costs of ILI-associated reactive school closures. These costs have been greatest in Tennessee and Kentucky and been elevated in rural or town areas relative to cities or suburbs. Our findings might provide evidence to support efforts to reduce the burden of seasonal influenza in these disproportionately impacted states or communities.


Subject(s)
Influenza, Human , United States/epidemiology , Humans , Influenza, Human/epidemiology , Disease Outbreaks , Kentucky , Students , Schools
9.
BMJ ; 381: 909, 2023 06 05.
Article in English | MEDLINE | ID: covidwho-20240159
10.
Med J Aust ; 218(11): 528-541, 2023 06 19.
Article in English | MEDLINE | ID: covidwho-20239586

ABSTRACT

Vaccination in pregnancy is the best strategy to reduce complications from influenza or pertussis infection in infants who are too young to be protected directly from vaccination. Pregnant women are also at risk of influenza complications preventable through antenatal vaccination. Both vaccines are funded under the National Immunisation Program for pregnant women in Australia, but coverage is not routinely reported nationally. We reviewed all reported Australian maternal influenza and pertussis vaccine coverage data for the period 2016-2021, to identify gaps and information needs. Maternal influenza vaccine coverage was suboptimal at < 58% for 2016-2018, with higher coverage of 62-75% reported in two states (Victoria and Western Australia) for 2019-2021. Maternal pertussis vaccine coverage from 2016 was generally higher than for influenza at > 70%, with the highest jurisdictional coverage of 89% reported in Western Australia in 2020. Vaccination rates were often suboptimal among First Nations pregnant women and up to 20% lower than among non-First Nations Australian women; while data were limited, coverage was low among culturally and linguistically diverse women and among women of lower socio-economic status. Jurisdictional perinatal data collections were the best source of information on antenatal vaccine coverage but were only available for a minority of the population; a nationally consistent systematic approach is lacking. Timely and comprehensive data are needed to provide feedback to improve maternal vaccination coverage, particularly among groups with higher risk and/or low uptake, and as new vaccines are recommended, including COVID-19 vaccination.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Pregnancy Complications, Infectious , Whooping Cough , Infant , Female , Pregnancy , Humans , Influenza Vaccines/therapeutic use , Pertussis Vaccine , Influenza, Human/epidemiology , Influenza, Human/prevention & control , COVID-19 Vaccines , Pregnant Women , Vaccination , Whooping Cough/epidemiology , Whooping Cough/prevention & control , Pregnancy Complications, Infectious/epidemiology , Pregnancy Complications, Infectious/prevention & control , Surveys and Questionnaires , Victoria
11.
PLoS One ; 18(5): e0284716, 2023.
Article in English | MEDLINE | ID: covidwho-20237945

ABSTRACT

Identifying the spatial patterns of genetic structure of influenza A viruses is a key factor for understanding their spread and evolutionary dynamics. In this study, we used phylogenetic and Bayesian clustering analyses of genetic sequences of the A/H1N1pdm09 virus with district-level locations in mainland China to investigate the spatial genetic structure of the A/H1N1pdm09 virus across human population landscapes. Positive correlation between geographic and genetic distances indicates high degrees of genetic similarity among viruses within small geographic regions but broad-scale genetic differentiation, implying that local viral circulation was a more important driver in the formation of the spatial genetic structure of the A/H1N1pdm09 virus than even, countrywide viral mixing and gene flow. Geographic heterogeneity in the distribution of genetic subpopulations of A/H1N1pdm09 virus in mainland China indicates both local to local transmission as well as broad-range viral migration. This combination of both local and global structure suggests that both small-scale and large-scale population circulation in China is responsible for viral genetic structure. Our study provides implications for understanding the evolution and spread of A/H1N1pdm09 virus across the population landscape of mainland China, which can inform disease control strategies for future pandemics.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza, Human , Humans , Influenza, Human/epidemiology , Influenza, Human/genetics , Influenza A Virus, H1N1 Subtype/genetics , Phylogeny , Bayes Theorem , China/epidemiology
12.
BMC Public Health ; 23(1): 1067, 2023 06 05.
Article in English | MEDLINE | ID: covidwho-20237608

ABSTRACT

INTRODUCTION: Two years after unprecedented low rates of circulation of most common respiratory viruses (SARS-CoV-2), the Egyptian ARI surveillance system detected an increase in acute respiratory infections (ARIs) with a reduced circulation of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), especially among school children. A national survey was conducted to estimate the burden and identify the viral causes of ARIs among children < 16 years of age. METHODS: A one-day survey was carried out in 98 governmental outpatient clinics distributed all over Egypt 26 governorates. The four largest referral hospitals in each governorate where most influenza-like illness (ILI) patients seek care were selected. Using the WHO case definition, the first five patients < 16 years of age with ILI symptoms visiting the selected outpatient clinics on the survey day were enrolled. Basic demographic and clinical data of patients were collected using a linelist. Patients were swabbed and tested for SARS-CoV-2, influenza, and Respiratory Syncytial virus (RSV) by RT-PCR at the Central Laboratory in Cairo. RESULTS: Overall, 530 patients enrolled, their mean age was 5.8 ± 4.2, 57.1% were males, and 70.2% reside in rural or semi-rural areas. Of all patients, 134 (25.3%) had influenza, 111 (20.9%) RSV, and 14 (2.8%) coinfections. Influenza-positive children were older compared to RSV, (7.2 ± 4.1, 4.3 ± 4.1, p < 0.001), with more than half of them (53.0%) being school students. Dyspnea was reported in RSV more than in influenza (62.2% vs. 49.3%, p < 0.05). Among RSV patients, children < 2 years had a higher rate of dyspnea than others (86.7% vs. 53.1%, < 0.001). CONCLUSIONS: A resurgence of influenza and RSV was detected in Egypt in the 2022-2023 winter season. Influenza caused a higher rate of infection than RSV, while RSV caused more severe symptoms than influenza. Monitoring a broader range of respiratory pathogens is recommended to estimate the ARI burden and risky groups for severe disease in Egypt.


Subject(s)
COVID-19 , Influenza, Human , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Virus Diseases , Male , Humans , Infant , Child , Female , Influenza, Human/epidemiology , Egypt/epidemiology , Respiratory Syncytial Virus Infections/epidemiology , Pandemics , COVID-19/epidemiology , SARS-CoV-2 , Respiratory Tract Infections/epidemiology
13.
EBioMedicine ; 93: 104630, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-20237475

ABSTRACT

BACKGROUND: Poor sleep is associated with an increased risk of infections and all-cause mortality but the causal direction between poor sleep and respiratory infections has remained unclear. We examined if poor sleep contributes as a causal risk factor to respiratory infections. METHODS: We used data on insomnia, influenza and upper respiratory infections (URIs) from primary care and hospital records in the UK Biobank (N ≈ 231,000) and FinnGen (N ≈ 392,000). We computed logistic regression to assess association between poor sleep and infections, disease free survival hazard ratios, and performed Mendelian randomization analyses to assess causality. FINDINGS: Utilizing 23 years of registry data and follow-up, we discovered that insomnia diagnosis associated with increased risk for infections (FinnGen influenza Cox's proportional hazard (CPH) HR = 4.34 [3.90, 4.83], P = 4.16 × 10-159, UK Biobank influenza CPH HR = 1.54 [1.37, 1.73], P = 2.49 × 10-13). Mendelian randomization indicated that insomnia causally predisposed to influenza (inverse-variance weighted (IVW) OR = 1.65, P = 5.86 × 10-7), URI (IVW OR = 1.94, P = 8.14 × 10-31), COVID-19 infection (IVW OR = 1.08, P = 0.037) and risk of hospitalization from COVID-19 (IVW OR = 1.47, P = 4.96 × 10-5). INTERPRETATION: Our findings indicate that chronic poor sleep is a causal risk factor for contracting respiratory infections, and in addition contributes to the severity of respiratory infections. These findings highlight the role of sleep in maintaining sufficient immune response against pathogens. FUNDING: Instrumentarium Science Foundation, Academy of Finland, Signe and Ane Gyllenberg Foundation, National Institutes of Health.


Subject(s)
COVID-19 , Influenza, Human , Respiratory Tract Infections , Sleep Initiation and Maintenance Disorders , Humans , Influenza, Human/complications , Influenza, Human/epidemiology , Public Health , COVID-19/complications , COVID-19/epidemiology , Respiratory Tract Infections/complications , Respiratory Tract Infections/epidemiology , Sleep , Mendelian Randomization Analysis , Genome-Wide Association Study , Polymorphism, Single Nucleotide
14.
BMJ Glob Health ; 8(6)2023 06.
Article in English | MEDLINE | ID: covidwho-20236938

ABSTRACT

Through the experiences gained by accelerating new vaccines for both Ebola virus infection and COVID-19 in a public health emergency, vaccine development has benefited from a 'multiple shots on goal' approach to new vaccine targets. This approach embraces simultaneous development of candidates with differing technologies, including, when feasible, vesicular stomatitis virus or adenovirus vectors, messenger RNA (mRNA), whole inactivated virus, nanoparticle and recombinant protein technologies, which led to multiple effective COVID-19 vaccines. The challenge of COVID-19 vaccine inequity, as COVID-19 spread globally, created a situation where cutting-edge mRNA technologies were preferentially supplied by multinational pharmaceutical companies to high-income countries while low and middle-income countries (LMICs) were pushed to the back of the queue and relied more heavily on adenoviral vector, inactivated virus and recombinant protein vaccines. To prevent this from occurring in future pandemics, it is essential to expand the scale-up capacity for both traditional and new vaccine technologies at individual or simultaneous hubs in LMICs. In parallel, a process of tech transfer of new technologies to LMIC producers needs to be facilitated and funded, while building LMIC national regulatory capacity, with the aim of several reaching 'stringent regulator' status. Access to doses is an essential start but is not sufficient, as healthcare infrastructure for vaccination and combating dangerous antivaccine programmes both require support. Finally, there is urgency to establish an international framework through a United Nations Pandemic Treaty to promote, support and harmonise a more robust, coordinated and effective global response.


Subject(s)
COVID-19 , Hemorrhagic Fever, Ebola , Influenza Vaccines , Influenza, Human , Humans , COVID-19 Vaccines , Influenza, Human/epidemiology , Pandemics/prevention & control , COVID-19/prevention & control , Neglected Diseases
15.
Euro Surveill ; 28(23)2023 Jun.
Article in English | MEDLINE | ID: covidwho-20233468

ABSTRACT

BackgroundIn 2020, due to the COVID-19 pandemic, the European Centre for Disease Prevention and Control (ECDC) accelerated development of European-level severe acute respiratory infection (SARI) surveillance.AimWe aimed to establish SARI surveillance in one Irish hospital as part of a European network E-SARI-NET.MethodsWe used routine emergency department records to identify cases in one adult acute hospital. The SARI case definition was adapted from the ECDC clinical criteria for a possible COVID-19 case. Clinical data were collected using an online questionnaire. Cases were tested for SARS-CoV-2, influenza and respiratory syncytial virus (RSV), including whole genome sequencing (WGS) on SARS-CoV-2 RNA-positive samples and viral characterisation/sequencing on influenza RNA-positive samples. Descriptive analysis was conducted for SARI cases hospitalised between July 2021 and April 2022.ResultsOverall, we identified 437 SARI cases, the incidence ranged from two to 28 cases per week (0.7-9.2/100,000 hospital catchment population). Of 431 cases tested for SARS-CoV-2 RNA, 226 (52%) were positive. Of 349 (80%) cases tested for influenza and RSV RNA, 15 (4.3%) were positive for influenza and eight (2.3%) for RSV. Using WGS, we identified Delta- and Omicron-dominant periods. The resource-intensive nature of manual clinical data collection, specimen management and laboratory supply shortages for influenza and RSV testing were challenging.ConclusionWe successfully established SARI surveillance as part of E-SARI-NET. Expansion to additional sentinel sites is planned following formal evaluation of the existing system. SARI surveillance requires multidisciplinary collaboration, automated data collection where possible, and dedicated personnel resources, including for specimen management.


Subject(s)
COVID-19 , Influenza, Human , Pneumonia , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Adult , Humans , Infant , Influenza, Human/diagnosis , Influenza, Human/epidemiology , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/epidemiology , Ireland/epidemiology , Pandemics , RNA, Viral/genetics , Sentinel Surveillance , COVID-19/epidemiology , SARS-CoV-2/genetics , Hospitals , Pneumonia/epidemiology , Respiratory Syncytial Virus Infections/diagnosis , Respiratory Syncytial Virus Infections/epidemiology
16.
RMD Open ; 9(2)2023 Jun.
Article in English | MEDLINE | ID: covidwho-20232340

ABSTRACT

INTRODUCTION: To identify facilitators and barriers towards vaccination in general and specifically against pneumococci, influenza and SARS-CoV-2 in patients with rheumatic musculoskeletal diseases (RMD). METHODS: Between February and April 2021, consecutive patients with RMD were asked to complete a structured questionnaire on general knowledge about vaccination, personal attitudes and perceived facilitators and barriers towards vaccination. General facilitators (n=12) and barriers (n=15) and more specific ones for vaccination against pneumococci, influenza and SARS-CoV-2 were assessed. Likert scales had four response options: from 1 (completely disagree) to 4 (completely agree). Patient and disease characteristics, their vaccination records and attitudes towards vaccination against SARS-CoV-2 were assessed. RESULTS: 441 patients responded to the questionnaire. Knowledge about vaccination was decent in ≥70% of patients, but <10% of patients doubted its effectiveness. Statements on facilitators were generally more favourable than on barriers. Facilitators for SARS-CoV-2 vaccination were not different from vaccination in general. Societal and organisational facilitators were more often named than interpersonal or intrapersonal facilitators. Most patients indicated that recommendations of their healthcare professional would encourage them to be vaccinated-without preference for general practitioner or rheumatologists. There were more barriers towards SARS-CoV-2 vaccination than to vaccination in general. Intrapersonal issues were most frequently reported as a barrier. Statistically significant differences in response patterns to nearly all barriers between patients classified as definitely willing, probably willing and unwilling to receive SARS-CoV-2 vaccines were noted. DISCUSSION: Facilitators towards vaccination were more important than barriers. Most barriers against vaccination were intrapersonal issues. Societal facilitators identified support strategies in that direction.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Musculoskeletal Diseases , Humans , COVID-19 Vaccines/therapeutic use , Influenza, Human/epidemiology , Influenza, Human/prevention & control , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , Prospective Studies , Influenza Vaccines/therapeutic use , Vaccination , Musculoskeletal Diseases/epidemiology , Musculoskeletal Diseases/etiology
17.
Sci Total Environ ; 892: 164495, 2023 Sep 20.
Article in English | MEDLINE | ID: covidwho-2328312

ABSTRACT

Wastewater-based surveillance can be a valuable tool to monitor viral circulation and serve as an early warning system. For respiratory viruses that share similar clinical symptoms, namely SARS-CoV-2, influenza, and respiratory syncytial virus (RSV), identification in wastewater may allow differentiation between seasonal outbreaks and COVID-19 peaks. In this study, to monitor these viruses as well as standard indicators of fecal contamination, a weekly sampling campaign was carried out for 15 months (from September 2021 to November 2022) in two wastewater treatment plants that serve the entire population of Barcelona (Spain). Samples were concentrated by the aluminum hydroxide adsorption-precipitation method and then analyzed by RNA extraction and RT-qPCR. All samples were positive for SARS-CoV-2, while the positivity rates for influenza virus and RSV were significantly lower (10.65 % for influenza A (IAV), 0.82 % for influenza B (IBV), 37.70 % for RSV-A and 34.43 % for RSV-B). Gene copy concentrations of SARS-CoV-2 were often approximately 1 to 2 logarithmic units higher compared to the other respiratory viruses. Clear peaks of IAV H3:N2 in February and March 2022 and RSV in winter 2021 were observed, which matched the chronological incidence of infections recorded in the Catalan Government clinical database. In conclusion, the data obtained from wastewater surveillance provided new information on the abundance of respiratory viruses in the Barcelona area and correlated favorably with clinical data.


Subject(s)
COVID-19 , Influenza, Human , Respiratory Syncytial Virus Infections , Viruses , Humans , Influenza, Human/epidemiology , Respiratory Syncytial Viruses/genetics , Wastewater , COVID-19/epidemiology , SARS-CoV-2 , Wastewater-Based Epidemiological Monitoring , Respiratory Syncytial Virus Infections/epidemiology
19.
Curr Opin Ophthalmol ; 31(6): 538-548, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-2323358

ABSTRACT

PURPOSE OF REVIEW: This review provides a historic perspective of the impact that major pandemics have had on human and their relationship with ophthalmology. The novel coronavirus epidemic is also analyzed, highlighting the relevance of the eye as a possible source of transmission, infection, and prognosis for the disease. RESULTS: Smallpox is suspected to be present for more than 12 000 years. However, trachoma seems to be the first recorded ophthalmological infectious disease. The deadliest pandemics include the bubonic plague, smallpox, and Spanish flu. The CoVID-19 epidemic is still developing and measures need to be implemented to prevent further escalation of the crisis. SUMMARY: Understanding the current facts in light of earlier historical evidence may help us prepare better to minimize the spread of infections in the future.


Subject(s)
Eye Diseases/epidemiology , Pandemics , Animals , Betacoronavirus , COVID-19 , Coronavirus Infections , Humans , Influenza Pandemic, 1918-1919 , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Influenza, Human/transmission , Pneumonia, Viral , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL